INFORMS 2001

Getting a Grip on the Cost of ATC Services

Penny Mefford
Chief Planner, Air Traffic Services
Federal Aviation Administration

FAA Air Traffic Services

- Responsible for the safe and efficient movement of aircraft throughout the National Airspace System
- Approx. \$6 Billion/year and 36,000 employees
- Over 500 service delivery points and more than 50,000 pieces of equipment
- Workforce with diverse skills: controllers, engineers, maintenance technicians, pilots

The FAA's new Cost Accounting System (CAS)

- Fully operational in April 2001
- Attributes all relevant FAA expenditures to 21 En Route Centers, 482 Terminal facilities, 61 Automated Flight Service Stations, and 5 Oceanic operations every month
- Tracks full costs of operation from service level to particular equipment sites
 - Direct costs
 - Overhead costs
 - Capital costs
 - "Book adjustments"
- Will provide life cycle cost data on capital projects as historical data accumulates

Annual Cost of Enroute Service Delivery Points For Fiscal Year Ending September 30, 2000

- Which facilities can be grouped based on similar production costs/components?
- What measures of output and performance best explain cost variations?
- How do trends vary over time?
- Do production costs vary by service or user type?
- Are there other factors that explain cost differences (e.g. facility level, Alaska)?
- How do cost accounting data and analytical models differ from budget tracking?

Analyzing CAS data

- Simple average based on activity
 - What metrics are appropriate for CAS cost components?
 - How well do averages reflect cost variability?
- Bivariate statistical cost models
 - Cost as a function of one metric
 - How well does a single measure reflect total en route costs and components?
 - Isolates incremental and fixed costs
- Multivariate statistical cost models
 - Cost as a function of multiple measures
 - Different explanatory variables to reflect differences in production
 - End up with multiple cost drivers
 - Isolates incremental and fixed costs
 - More complex to explain to executives

Total En Route Costs and Flight Hours

Only En Route ATO costs vary with activity

Statistical analysis of CAS data

Cost Models:

A Regression Based approach to isolate those factors that affect costs

Cost Assignments

- Total
- ATO
- AFO
- Direct
- Variable
- Direct/Variable

Activity

- Hours
- Miles
- Operations
- Departures
- Overs
- By user

Attributes

- FY
- Cost of living
- Alaska

SDP Characteristics

Facility level

+

- No. of sectors
- Complexity
- # per region
- FSEP count
- NAPRS count
- Departure %

Variables in **Bold** had most significant results

Total cost flight hours model results

Model		All SDP's			
Variable	Coefficient	Units	Estimated	Pct. of	
			Cost (\$mil)	SDP	
Constant	\$44,961,600	21	\$944.2	40.9%	
Flight Hours	\$36.28	23,773,600	\$862.6	37.4%	
Year 2000	\$8,378,680	21	\$176.0	7.6%	
Level 12*	\$9,464,280	8	\$75.7	3.3%	
Alaska	\$14,700,900	1	\$14.7	0.6%	
Complexity**	\$96,814.20	2,436	<u>\$235.8</u>	10.2%	
Total Estimated Cost			\$2,309.0		
FY2000 CAS Total SDP Cost			\$2,309.0	100.0%	

^{*0 =} Level 10 and 11; 1 = Level 12

Note: Model estimated with FY 1999 and 2000 data.

All coefficients are significant; only 37% of costs vary with activity. Adjusted $R^2 = 0.76$.

^{**}Complexity is a measure created by multiplying the number of terminal facilities underlying an SDP by their level.

Model		All SDP's			
Variable	Coefficient	Units		stimated ost (\$mil)	Pct. of SDP
Constant	\$3,813,247.56	21	\$	80.1	7%
Flight Hours	\$33.42	23,773,596		794.5	66%
Year 2000	\$3,475,875.00	21		73.0	6%
Level 12 Facility*	\$9,608,470.13	8		76.9	6%
Complexity**	\$75,347.55	2,436		183.5	15%
Total Estimated Cost			\$	1,208.0	
FY2000 CAS SDP ATO Cost			\$	1,208.0	100%

^{*0} if Level 10 or 11; 1 if Level 12
**Complexity is created by multiplying the

**Complexity is created by multiplying the number of terminal facilities underlying an en route SDP by the level of those facilities. Note: Model estimated with FY 1999 and 2000 data.

All coefficients are significant except constant; adjusted $R^2 = 0.91$. Two-thirds of costs vary with activity; complexity also important.

AFO flight hours cost model results

Model		All SDP's			
Variable	Coefficient	Units	Estimated Cost (\$mil)	Pct. of SDP	
Constant	\$ 3,851,266	21	\$ 80.9	17%	
Flight Hours	\$ 3.47	23,773,596	82.6	17%	
Level 12 Facility*	\$ 1,594,107	8	12.8	3%	
Percent Departures**	\$ 21,859,637	21 units @ 38%	173.7	36%	
NAPRS Facilities	\$ 22,828	5,865	133.9	28%	
Total Estimated Cost			\$ 483.8	100%	
FY2000 CAS SDP AFO Cost			\$ 481.7		

^{*0} if Level 10 or 11; 1 if Level 12

All coefficients are significant except constant; adjusted R² = 0.63. Most of costs explained by percent departures to operations (a measure of complexity) and number of NAPRS facilities.

^{**}Percent of departures to total operations; a measure of how much traffic originates or terminates within the SDP

Eurocontrol/FAA En Route Service Comparison

- First international ATC benchmarking effort
- Compared multiple parameters:
 - General aspects (airspace size, demand, complexity)
 - Organizational aspects (facilities, controllers, sectors)
 - Civil/military relationship
 - Traffic activity
 - Safety
 - Delays
 - Air navigation service costs
 - Staff resources
- Developed high level indicators

Findings

- No significant differences in safety, delays, staffing
- Structurally similar airspace volume, traffic concentration, route lengths
- U.S. traffic volume is twice that of Europe (IFR)
- U.S. has significantly less en route facilities than Europe (21 versus 58)
- U.S. is twice as cost effective as its European counterpart
- Additional in-depth analysis is underway to investigate apparent productivity differences